18th Australasian Fluid Mechanics Conference
Launceston, Australia
3-7 December 2012

Dynamic time-scale for Lagrangian-averaged subgrid-scale models based on Rice’s formula

C. VerHulst! and C. Meneveau

12

1Department of Mechanical Engineering
and Center for Environmental and Applied Fluid Mechanics, Johns Hopkins University, Baltimore, MD 21218, USA

20n sabbatical leave at the Department of Mechanical Engineering
University of Melbourne, Victoria 3010, Australia

Abstract

The dynamic formulation of Smagorinsky’s subgrid-scale
model for Large Eddy Simulations (LES) requires averaging
to avoid instability due to extreme fluctuations. For comple
geometry flows, a Lagrangian time-averaging approach is of-
ten useful [see Meneveau, Lund, and Cabot, JFM 319 (1996)].
However, an ad-hoc choice of the relaxation time-scale must

be made, often based on resolved strain-rates and stresses a

the grid-scale. Recently, Park and Mahesh [Phys. Fluids 21,
065106 (2009)] proposed the attractive notion of usingsstat
tics of the Germano-identity error along pathlines to detee

a time-scale dynamically. We adopt this concept, but daterm
the time-scale using Rice’s formula to estimate the time be-
tween mean-crossings of the error signal. We set the aveyagi
time-scale to be a multiple (4x) of this value. The approaeh r
quires accumulating Lagrange-averages of the squareador

its time-derivative squared, which is done using the Eateri
approximation as proposed in the original model. LES of ehan
nel flow is analyzed and, for validation, LES of flow through
an array of wall-mounted cubes is compared with experinhenta
results. It is argued that the resulting model is not entidgt-
namic, since the factor relating the averaging time-saadthhe
Taylor microscale must be prescribed. In agreement with the
results of Park and Mahesh, we find the scaling of the dynamic
time-scale to be superior to the original time-scale.

Introduction

arguments, as well as practical considerations, basecdedreth
grangian averages themselves. In a sense, the approabehvo

a “non-dynamic” element, since one could select the avegagi
time-scale based on ad-hoc and adjustable parameters.nThe u
derlying idea of the original model of Refs. [1, 7] was that th
model parameters to be used in the specification of the eddy-
viscosity would not contain adjustable parameters, butttie
regions over which users choose to enforce the Germano iden-
tity would by necessity involve user-selected decisiordstans

not be fully dynamic. In the LASD model the time-scdlds
used to define this averaging region.

Recently, aiming to address the ad-hoc specificatioh iof the
original Lagrangian dynamic model as well as an observed mis
match with the autocorrelation time-scale of the dynamiorer
Park and Mahesh [8] proposed to use the simulated autocorre-
lation structure of the error in the Germano identity to setke
averaging time-scale. This idea has the attractive fedtatehe
selected time-scale would dynamically adjust to the tiwees

of the flow. They proposed to determine the correlation time-
scale by evaluating the two-time correlation at a small num-
ber of time delays, fitting a parabola centered at zero tirge di
placement, and then extrapolating to determine a charstiter
time-scale of the process as the time-delay at which théoplra
crosses zero correlation. More recently, the approach éais b
further applied in other flows [14].

In this work, we extend the ideas of Ref. [8] and recall that th
extrapolated zero-crossing of the autocorrelation famcis re-

One of the most successful and popular subgrid-scale models |5ted to the temporal Taylor microscale of the process, hic

for Large Eddy Simulations (LES) of turbulent flows has been
the dynamic Smagorinsky model [3]. When the Smagorinsky
model is combined with Germano’s identity [3] to represdnt e
fects of the unresolved motions, the expression becomes ove
constrained and an error-minimization procedure is ne¢tled
to obtain the model coefficient. While some localized versio

can be determined quite naturally by evaluating the vadanc
of the time derivative of a process. As a further motivation
for invoking the Taylor microscale, we recall that for Gaass
processes, there is a one-to-one relationship betweervéne a
age frequency of level-crossings of a signal and the Tayler m
croscale [11]. This relationship has been used in the copfex

of the dynamic model have been used, most practitioners find 1, ryulent flows in Ref. [13].
that the dynamic coefficient must be determined subject to an
error minimization that also involves some kind of averagin

. . Formulation
As has been reviewed on several occasions [6, 9, 12], for flows

that possess directions of statistical homogeneity, ajpatier-
aging is appropriate. For complex-geometry flows with no spa
tial directions of homogeneity, temporal averaging can &e p
formed, but to comply with Galilean invariance the averggin
should take place in a frame moving with the fluid, i.e. La-
grangian averaging [7].

For LES of high Reynolds number boundary layer flows that
do not resolve the viscous region near the wall (“wall-medel
LES”), it has been found that scale-dependence should ke tak
into account [10], leading to the introduction of the Lagyiam-
averaged Scale Dependent (LASD) dynamic model [1]. In the
LASD model the error is minimized along particle pathlings u
ing a backward-in-time exponential weighting functionttisa
characterized by a Lagrangian time-scildn Refs. [1, 7], the
time-scale was set in an empirical fashion using dimensiona

In the dynamic model, stress and strain-rate like tensgrs
and Mj; are defined based on the resolved velocity field and
strain-rate tensors, at the grid-scéie) and test-filter scale

2A (), aslLjj = lia] - ﬁiﬁj and Mjj = 202 [‘Qéj —4|§§j].
The error in the Germano identity is then defined according
to (aja) = ((Lij fchi,-)2>. The Lagrangian time-averaged
versions of appropriate contractions of the various tensoe
denoted agLijMij) = Fim = %fim LijMij (th exp<ft}—"> dt’,

and similarly forFywm. In practice, these averages are updated

at time-stem+ 1 based on the values at time-stepccording
to

LX) = (1) 7 (x— GAD) +eLEF L oM (0, (1)

wheree = %/ <1+ $> thus avoiding the need for backward



integration in time. The upstream ‘off-grid’ values can ale
uated using interpolation of various orders; we use trdine
interpolation [7]. The dynamic coefficient is then given by
cg = FLm/Fmm- In the original model [7], the time-scale

was set according t& = Ty mm = BA(FLmFvm) Y8, and

0 = 1.5 was selected in an ad-hoc fashion based on analysis
of DNS. This choice ofT has the advantage that wheny
decreases to zero with a tendency to becoming negative {some
thing one wishes to avoid to prevent numerical instabgjti¢he
time-scale increases rapidly, hence preventmg from ever
becoming negative.

The analysis of Ref. [8] showed that for channel flow, the
time-scaleT v mm differed significantly from the autocorrela-
tion time-scale of the error signdéje;)(t) in a Lagrangian
frame. DefiningE = (&), they consider the autocorrelation
function of the procesg(t) in (Lagrangian) timepg(t), as a
means of calculating an appropriate time-scaleNeart = 0,

the correlation function of a sufficiently differentiableopess
can always be approximated with a parabola

(),

and the intersect of this parabola wjl= 0 defines a time-scale
Tgc. This time-scale is termed ‘surrogate’ by Park & Mahesh
since they evaluate the correlation function at every pogt
ing practically-motivated approximate techniques that iau-
merically efficient. Use of this time-scale was shown in both
[8] and [14] to lead to very good performance in LES. The
selection ofcTg- as a time-scale (witle = 1) is based on as-
suming thatc = 1 is a natural choice. However, recognizing
that the autocorrelation of the error reaches zero at sogmifiy
longer time-scales thakhy, the choice of = 1 is neither unique
nor inevitable. It is therefore important to recognize that
empirically-motivated (non-dynamic) choice has been niade
[8] to select this time-scale. However, the experience pafti
[14] shows that this choice makes sense a-posteriori, shece
resulting time-scale shows good scaling properties acrass
ous flow regions.

)

It is useful to point out thalg: is proportional to the temporal
Taylor microscale of the process,

(E"?)

=
E o ((dE//dt)?)’

®3)
whereE’ = E — (E). Specifically, Tez = v/2 Tg sincepg (1) ~
1— 3[((dE’/dt)®)/(E™)]2 . In this work, we recall another
interpretation of the Taylor microscale as being relatetho
average zero-crossing of a signal [11, 13]. In particulair,af
Gaussian process, the Rice formula [11] states that thageer
zero-crossing time-scal® of a signalE is given by

dE/dt) @

In this expression, the averaging®f and (dE /dt)? also must
be understood, and be performed, using Lagrangian averagin
An equivalent expression for mean-crossings has an additio
prefactor which is approximately unity for signals with arst
dard deviation much larger than its mean [11]. Siqe) is
non-negative with large standard deviation, we use Eq. 4t0 e
timate the mean-crossing time-scale.

We have performed various tests using the dynamically deter
mined time-scale to evaluate such averages, and then using
these averages to determine the time-scale (numericalbni
explicit approach). Reassuringly, such tests have shoan th
using averages to compute a time-scale that itself depemds o

those averages does not cause instability. Furthermoee, th
derivative in(dE/dt)? is a material derivative, and to evaluate
it, we use the ‘upstream’ earlier values of average squace. er

Our initial experimentations have shown that if an averggin
time-scaleT = T; is used, there remains a significant propor-
tion of points on which the numeratar s becomes negative
and thus perhaps longer periods of averaging may be required
Since typically expected fluctuations of the dynamic errdr w
involve an ‘up’ and ‘down’ over a tim&; = T Tg, if one wishes

to obtain a more or less ‘converged’ value of the average, one
may need several such ups and downs to obtain something close
to an average value. Assuming we wish to have (say) two typ-
ical ‘cycles’ (i.e. 4 zero-crossings), one may choose an av-
eraging time-scal§ = Tgz = 4T, = 41t 1. Note, however,

that this choice is again ‘non-dynamic’. Also, it is signéidly
larger than the time-scales used by [8] and [14], althougly th
scale in the same way. Finally, we point out that the Rice the-
orem holds for Gaussian signals, whereas the square error in
the Germano-identity, being a square quantity as well as an
intermittent small-scale variable in turbulence, presdmghly
non-Gaussian statistics. Our tests using synthetic sdgmale
shown that Rice’s formula remains approximately valid eifen
the proces&(t) is not Gaussian.

Results

In this section, the dynamic time-scale approach uding

Tez = 4mte is applied to LES of high Reynolds number atmo-
spheric boundary layer flow and to flow over an array of cubes.
The numerical code has been described in various prior publi
cations [1, 2, 10]. It uses pseudo-spectral discretizatidmori-
zontal planes (periodic BC), and 2nd-order finite diffeiagén

the vertical, with a stress-free lid at the top and a stanttayd
law extrapolation to replace the no-slip BC at the bottoml.wal
Time-advancement is done using 2nd-order Adams-Bashforth
The Lagrangian averages are updated once every 5 time-steps
only, as in prior applications [1]. We use a further variaht o
the dynamic model, namely the scale-dependent versior®[1, 1
to account for changes in coefficient with scale as the serfac
is approached. Test filtering is done in horizontal planésgus
spectral-cutoff filters atR and 4\. The only difference with the
approach followed in [1] is the choice of averaging timelsca
which is evaluated according to Eq. 4 (with a factor 4x) and
evaluating averages @&?2 and (dE/dt)2 using the method as

in Eq. 1. The flow is forced by means of an applied pressure
gradient. The simulation is for flow at very high Reynolds rum
ber and so the molecular viscosity is set to zero. The rowgghne
length for the bounding surface is setzp= 10~*H whereH

is the height of the domain. We compare results obtainedyusin
the time-scaldgz andTim mm .

The results (not shown) for the boundary layer flow are such
that the mean velocity profiles, as well as profiles of resblve
Reynolds stresses are almost the same when using the tradi-
tional or the new time-scale. There are some minor diffezenc
in average subgrid-scale shear stresses, withTgheresults
leading to slightly smaller SGS shear stress. In terms of the
dynamically determined variables themselves, there aarcl
differences. Figure 1 shows (left panels) the resultingnreea
efficient values for both time-scales as function of height (
units ofA). The new time-scale, being shorter over much of the
channel (see middle panels), yields also smaller valuebeof t
dynamic Smagorinsky coefficient. Comparing the time-scale
in the middle panels, we find similar results as those from Ref
[8] and [14]: the dynamic time-scale is more representative
the local turn-over time-scale compared to the behavioibexh
ited by Tum mm , Which near the surface becomes very small due
to large shear that makemizj very high, as pointed out in Ref.



15 30
—a— 32
TEZ TEZ —a— 64
4r —— 128
10F 20
3L
< < g
N N N
of
5F 10
1t —=— 32 —e— 32
—h— 64 —a— 64
128 — 128
0, It 1 L L L 0, L 1 1
0.01 0.02 Cz 0.03 0.04 0.05 0.2 04 0.6 0.8
s EZ/TL
5 15
P TLMvMM
10
3k
ok
5L
1t —a— 32 —=— 3
—h— 64 —a— 64
128 — 128
0 , L L L 0 L L s o |
0.01 0.02 ~2 0.03 0.04 0.05 2 4 6 50 100 150 , 200 250 300
Cs Towm/ T, e ;/u,

Figure 1: Left panels: profiles of dynamic coefficient. Mielglanels:

dynamically computed time-scale, scaled by tted teference

turn-over time-scal@ = A/up = (K2)/u, % (A/Kz)2/3. Right panels: average Germano-identity square error. peogels use the
dynamic time-scal@gz = 4re while bottom panels use the traditional time-schl@ mwm .
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Figure 2: Mean velocity profiles predicted by LES using theaiyic

time-scale (triangles) and experimental data froifn % (a)

Shows side view across center of cubes for streamwise méagcitye(b) shows top view of half the domain, a cut throught hize

cube, streamwise and (c) transverse velocity.

[8]. Interestingly, examining the right panels, we also fihdt
the dynamic error is slightly lower for the dynamic timedeca
as compared to the traditional model, although the diffeesn
are small.

Next, we consider a flow with a fully complex spatial struetur
flow over a periodic array of wall-mounted cubes. For this ap-
plication, objects in the flow are represented using a vaoén
the immersed boundary method, as detailed in Ref. [2]. Four
cubes are explicitly modeled, and the geometry follows tffiat
Ref. [5] whose data we use to compare to LES predictions. The
LES resolves a 2 2 cube array with periodic boundary condi-
tions, and uses a very coarse mesh witlx@&4l x 29 grid points

(8 points are used per cube edge) in order to provide a strin-
gent test of model and code. The domain sizehis 8h x 3.5h,
whereh is the size of the cubes. Boundary conditions on the
cubes are highly approximate in the sense that we use trgéalas
log-law applied normal to the surface, since we do not resolv
the viscous sub-layers on any of the surfaces.

Figure 2 shows mean streamwise and cross-stream velooity pr
files at various downstream locations. LES predictionsfell
the experimental data quite well. Further results assediaith

the model are shown in Figure 3. The upper left panel shows

that the dynamically computed coefficient is close to tha-sta
dard valuec? ~ 0.01— 0.02, except in the near-wake region
where the coefficient is larger. The time-scale (shown on the
top center panel) shows only small variations across theagtom
The average square error and square time-derivative allgis
smooth distributions across the domain, as do the averdges o
FLm and Fym.

Conclusions

A follow up study of a dynamic time-scale Lagrangian subgrid
scale model for LES [8] has been undertaken. Connections
to the temporal Taylor-scale and mean zero-crossing sdale o
the error signal generated by the Germano identity have been
pointed out. Simulations in (half)-channel high Reynoldsna

ber flow show very little differences between the mean veloc-
ity and Reynolds stress profiles when compared to the origi-
nal time-scale. However, the dynamically-computed tiroates
displays more uniform and reasonable scaling behaviorras fu
tion of distance to the ground, in agreement with the findirfgs
Refs. [8, 14]. In terms of added computational expense, com-
pared to accumulating the averages o1 and Fvm as in the
traditional approach, additionally for the present dyratime-
scale the averages &2 and (dE/dt)2 must be accumulated.
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Figure 3: Contours across the domain of (a) the dynamic cosffi, (b) the dynamic time-scale in units ldf/u, whereu, is the
friction velocity andH is the domain height, (c) mean square error in unit&fj?, (d) the squared time derivative of the error in units

of (u2/H)?, (e) FLm in units ofu?, and (f) Fym in units of u?.

Each requires a trilinear interpolation at each point tcaade

in time (and in addition such interpolation is required talev
uate the Lagrangian time derivative B). As with the other
subgrid values, this is only done every five time steps duttieg
simulation. On average, simulations using the dynamic-time
scale took about 13 % longer to run compared to the traditiona
Lagrangian dynamic model.

Concluding, we remark that the interpretation of the avieiag
time-scale based on the mean-crossing time for the errnakig
is conceptually appealing and has the advantage found & Ref
[8, 14] of leading to averaging time-scales that agree befté
expected physical eddy-turnover time-scales of the flomwHo
ever, the interpretation based on the mean-crossing tisee al
highlights the fact that recourse to a non-dynamic paramete
must still be made, both in the present approach (we usg:4,

as well as in that of Refs. [8, 14] (who selectg¢@ Tg).
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