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Abstract

The dynamic formulation of Smagorinsky’s subgrid-scale
model for Large Eddy Simulations (LES) requires averaging
to avoid instability due to extreme fluctuations. For complex-
geometry flows, a Lagrangian time-averaging approach is of-
ten useful [see Meneveau, Lund, and Cabot, JFM 319 (1996)].
However, an ad-hoc choice of the relaxation time-scale must
be made, often based on resolved strain-rates and stresses at
the grid-scale. Recently, Park and Mahesh [Phys. Fluids 21,
065106 (2009)] proposed the attractive notion of using statis-
tics of the Germano-identity error along pathlines to determine
a time-scale dynamically. We adopt this concept, but determine
the time-scale using Rice’s formula to estimate the time be-
tween mean-crossings of the error signal. We set the averaging
time-scale to be a multiple (4x) of this value. The approach re-
quires accumulating Lagrange-averages of the square errorand
its time-derivative squared, which is done using the Eulerian
approximation as proposed in the original model. LES of chan-
nel flow is analyzed and, for validation, LES of flow through
an array of wall-mounted cubes is compared with experimental
results. It is argued that the resulting model is not entirely dy-
namic, since the factor relating the averaging time-scale and the
Taylor microscale must be prescribed. In agreement with the
results of Park and Mahesh, we find the scaling of the dynamic
time-scale to be superior to the original time-scale.

Introduction

One of the most successful and popular subgrid-scale models
for Large Eddy Simulations (LES) of turbulent flows has been
the dynamic Smagorinsky model [3]. When the Smagorinsky
model is combined with Germano’s identity [3] to represent ef-
fects of the unresolved motions, the expression becomes over-
constrained and an error-minimization procedure is needed[4]
to obtain the model coefficient. While some localized versions
of the dynamic model have been used, most practitioners find
that the dynamic coefficient must be determined subject to an
error minimization that also involves some kind of averaging.
As has been reviewed on several occasions [6, 9, 12], for flows
that possess directions of statistical homogeneity, spatial aver-
aging is appropriate. For complex-geometry flows with no spa-
tial directions of homogeneity, temporal averaging can be per-
formed, but to comply with Galilean invariance the averaging
should take place in a frame moving with the fluid, i.e. La-
grangian averaging [7].

For LES of high Reynolds number boundary layer flows that
do not resolve the viscous region near the wall (“wall-modeled
LES”), it has been found that scale-dependence should be taken
into account [10], leading to the introduction of the Lagrangian-
averaged Scale Dependent (LASD) dynamic model [1]. In the
LASD model the error is minimized along particle pathlines us-
ing a backward-in-time exponential weighting function that is
characterized by a Lagrangian time-scaleT . In Refs. [1, 7], the
time-scale was set in an empirical fashion using dimensional

arguments, as well as practical considerations, based on the La-
grangian averages themselves. In a sense, the approach involved
a “non-dynamic” element, since one could select the averaging
time-scale based on ad-hoc and adjustable parameters. The un-
derlying idea of the original model of Refs. [1, 7] was that the
model parameters to be used in the specification of the eddy-
viscosity would not contain adjustable parameters, but that the
regions over which users choose to enforce the Germano iden-
tity would by necessity involve user-selected decisions and thus
not be fully dynamic. In the LASD model the time-scaleT is
used to define this averaging region.

Recently, aiming to address the ad-hoc specification ofT in the
original Lagrangian dynamic model as well as an observed mis-
match with the autocorrelation time-scale of the dynamic error,
Park and Mahesh [8] proposed to use the simulated autocorre-
lation structure of the error in the Germano identity to select the
averaging time-scale. This idea has the attractive featurethat the
selected time-scale would dynamically adjust to the time-scales
of the flow. They proposed to determine the correlation time-
scale by evaluating the two-time correlation at a small num-
ber of time delays, fitting a parabola centered at zero time dis-
placement, and then extrapolating to determine a characteristic
time-scale of the process as the time-delay at which the parabola
crosses zero correlation. More recently, the approach has been
further applied in other flows [14].

In this work, we extend the ideas of Ref. [8] and recall that the
extrapolated zero-crossing of the autocorrelation function is re-
lated to the temporal Taylor microscale of the process, which
can be determined quite naturally by evaluating the variance
of the time derivative of a process. As a further motivation
for invoking the Taylor microscale, we recall that for Gaussian
processes, there is a one-to-one relationship between the aver-
age frequency of level-crossings of a signal and the Taylor mi-
croscale [11]. This relationship has been used in the context of
turbulent flows in Ref. [13].

Formulation

In the dynamic model, stress and strain-rate like tensorsLi j
and Mi j are defined based on the resolved velocity field and
strain-rate tensors, at the grid-scale∆ ( )̃ and test-filter scale

2∆ (ˆ), as Li j = ̂̃uiũ j − ˆ̃ui ˆ̃u j and Mi j = 2∆2
[ ̂|S̃|S̃i j −4| ˆ̃S| ˆ̃Si j

]
.

The error in the Germano identity is then defined according

to 〈ei jei j〉 = 〈
(
Li j −c2

s Mi j
)2〉. The Lagrangian time-averaged

versions of appropriate contractions of the various tensors are

denoted as〈Li jMi j〉≡ FLM = 1
T

R t
−∞ Li jMi j(t ′)exp

(
− t−t ′

T

)
dt ′,

and similarly forFMM . In practice, these averages are updated
at time-stepn+1 based on the values at time-stepn according
to

F
n+1

LM (x) = (1− ε)F n
LM(x− ũ∆t)+ εLn+1

i j (x)Mn+1
i j (x), (1)

whereε = ∆t
T /

(
1+ ∆t

T

)
, thus avoiding the need for backward



integration in time. The upstream ‘off-grid’ values can be eval-
uated using interpolation of various orders; we use trilinear
interpolation [7]. The dynamic coefficient is then given by
c2

s = FLM/FMM . In the original model [7], the time-scaleT
was set according toT = TLM,MM = θ∆(FLMFMM)−1/8, and
θ = 1.5 was selected in an ad-hoc fashion based on analysis
of DNS. This choice ofT has the advantage that whenFLM
decreases to zero with a tendency to becoming negative (some-
thing one wishes to avoid to prevent numerical instabilities), the
time-scale increases rapidly, hence preventingFLM from ever
becoming negative.

The analysis of Ref. [8] showed that for channel flow, the
time-scaleTLM,MM differed significantly from the autocorrela-
tion time-scale of the error signal〈ei jei j〉(t) in a Lagrangian
frame. DefiningE = 〈ei jei j〉, they consider the autocorrelation
function of the processE(t) in (Lagrangian) time,ρE(τ), as a
means of calculating an appropriate time-scaleT . Nearτ = 0,
the correlation function of a sufficiently differentiable process
can always be approximated with a parabola

ρE(τ) ≈ 1−
(

τ
TSC

)2

, (2)

and the intersect of this parabola withρ = 0 defines a time-scale
TSC . This time-scale is termed ‘surrogate’ by Park & Mahesh
since they evaluate the correlation function at every pointus-
ing practically-motivated approximate techniques that are nu-
merically efficient. Use of this time-scale was shown in both
[8] and [14] to lead to very good performance in LES. The
selection ofcTSC as a time-scale (withc = 1) is based on as-
suming thatc = 1 is a natural choice. However, recognizing
that the autocorrelation of the error reaches zero at significantly
longer time-scales thanTSC, the choice ofc = 1 is neither unique
nor inevitable. It is therefore important to recognize thatan
empirically-motivated (non-dynamic) choice has been madein
[8] to select this time-scale. However, the experience of [8] and
[14] shows that this choice makes sense a-posteriori, sincethe
resulting time-scale shows good scaling properties acrossvari-
ous flow regions.

It is useful to point out thatTSC is proportional to the temporal
Taylor microscale of the process,

τ2
E =

〈E ′2〉
〈(dE ′/dt)2〉 , (3)

whereE ′ = E −〈E〉. Specifically,TSC =
√

2 τE sinceρE(τ) ≈
1− 1

2 [〈(dE ′/dt)2〉/〈E ′2〉]τ2 . In this work, we recall another
interpretation of the Taylor microscale as being related tothe
average zero-crossing of a signal [11, 13]. In particular, for a
Gaussian process, the Rice formula [11] states that the average
zero-crossing time-scaleTz of a signalE is given by

Tz =

(
π2〈E2〉

〈(dE/dt)2〉

)1/2

= π τE . (4)

In this expression, the averaging ofE2 and(dE/dt)2 also must
be understood, and be performed, using Lagrangian averaging.
An equivalent expression for mean-crossings has an additional
prefactor which is approximately unity for signals with a stan-
dard deviation much larger than its mean [11]. SinceE(t) is
non-negative with large standard deviation, we use Eq. 4 to es-
timate the mean-crossing time-scale.

We have performed various tests using the dynamically deter-
mined time-scale to evaluate such averages, and then using
these averages to determine the time-scale (numerically, in an
explicit approach). Reassuringly, such tests have shown that
using averages to compute a time-scale that itself depends on

those averages does not cause instability. Furthermore, the
derivative in(dE/dt)2 is a material derivative, and to evaluate
it, we use the ‘upstream’ earlier values of average square error.

Our initial experimentations have shown that if an averaging
time-scaleT = Tz is used, there remains a significant propor-
tion of points on which the numeratorFLM becomes negative
and thus perhaps longer periods of averaging may be required.
Since typically expected fluctuations of the dynamic error will
involve an ‘up’ and ‘down’ over a timeTz = π τE , if one wishes
to obtain a more or less ‘converged’ value of the average, one
may need several such ups and downs to obtain something close
to an average value. Assuming we wish to have (say) two typ-
ical ‘cycles’ (i.e. 4 zero-crossings), one may choose an av-
eraging time-scaleT = TEZ = 4Tz = 4π τE . Note, however,
that this choice is again ‘non-dynamic’. Also, it is significantly
larger than the time-scales used by [8] and [14], although they
scale in the same way. Finally, we point out that the Rice the-
orem holds for Gaussian signals, whereas the square error in
the Germano-identity, being a square quantity as well as an
intermittent small-scale variable in turbulence, presents highly
non-Gaussian statistics. Our tests using synthetic signals have
shown that Rice’s formula remains approximately valid evenif
the processE(t) is not Gaussian.

Results

In this section, the dynamic time-scale approach usingT =
TEZ = 4π τE is applied to LES of high Reynolds number atmo-
spheric boundary layer flow and to flow over an array of cubes.
The numerical code has been described in various prior publi-
cations [1, 2, 10]. It uses pseudo-spectral discretizationin hori-
zontal planes (periodic BC), and 2nd-order finite differencing in
the vertical, with a stress-free lid at the top and a standardlog-
law extrapolation to replace the no-slip BC at the bottom wall.
Time-advancement is done using 2nd-order Adams-Bashforth.
The Lagrangian averages are updated once every 5 time-steps
only, as in prior applications [1]. We use a further variant of
the dynamic model, namely the scale-dependent version [1, 10]
to account for changes in coefficient with scale as the surface
is approached. Test filtering is done in horizontal planes using
spectral-cutoff filters at 2∆ and 4∆. The only difference with the
approach followed in [1] is the choice of averaging time-scale,
which is evaluated according to Eq. 4 (with a factor 4x) and
evaluating averages ofE2 and (dE/dt)2 using the method as
in Eq. 1. The flow is forced by means of an applied pressure
gradient. The simulation is for flow at very high Reynolds num-
ber and so the molecular viscosity is set to zero. The roughness
length for the bounding surface is set toz0 = 10−4H whereH
is the height of the domain. We compare results obtained using
the time-scaleTEZ andTLM,MM .

The results (not shown) for the boundary layer flow are such
that the mean velocity profiles, as well as profiles of resolved
Reynolds stresses are almost the same when using the tradi-
tional or the new time-scale. There are some minor differences
in average subgrid-scale shear stresses, with theTEZ results
leading to slightly smaller SGS shear stress. In terms of the
dynamically determined variables themselves, there are clear
differences. Figure 1 shows (left panels) the resulting mean co-
efficient values for both time-scales as function of height (in
units of∆). The new time-scale, being shorter over much of the
channel (see middle panels), yields also smaller values of the
dynamic Smagorinsky coefficient. Comparing the time-scales
in the middle panels, we find similar results as those from Ref.
[8] and [14]: the dynamic time-scale is more representativeof
the local turn-over time-scale compared to the behavior exhib-
ited byTLM,MM , which near the surface becomes very small due
to large shear that makesM2

i j very high, as pointed out in Ref.



Figure 1: Left panels: profiles of dynamic coefficient. Middle panels: dynamically computed time-scale, scaled by the local reference
turn-over time-scaleT∆ = ∆/u∆ = (κz)/u∗ × (∆/κz)2/3. Right panels: average Germano-identity square error. Toppanels use the
dynamic time-scaleTEZ = 4πτE while bottom panels use the traditional time-scaleTLM,MM .

Figure 2: Mean velocity profiles predicted by LES using the dynamic time-scale (triangles) and experimental data from Ref. [5]. (a)
Shows side view across center of cubes for streamwise mean velocity, (b) shows top view of half the domain, a cut through half the
cube, streamwise and (c) transverse velocity.

[8]. Interestingly, examining the right panels, we also findthat
the dynamic error is slightly lower for the dynamic time-scale,
as compared to the traditional model, although the differences
are small.

Next, we consider a flow with a fully complex spatial structure:
flow over a periodic array of wall-mounted cubes. For this ap-
plication, objects in the flow are represented using a variant of
the immersed boundary method, as detailed in Ref. [2]. Four
cubes are explicitly modeled, and the geometry follows thatof
Ref. [5] whose data we use to compare to LES predictions. The
LES resolves a 2×2 cube array with periodic boundary condi-
tions, and uses a very coarse mesh with 64×64×29 grid points
(8 points are used per cube edge) in order to provide a strin-
gent test of model and code. The domain size is 8h×8h×3.5h,
whereh is the size of the cubes. Boundary conditions on the
cubes are highly approximate in the sense that we use the classic
log-law applied normal to the surface, since we do not resolve
the viscous sub-layers on any of the surfaces.

Figure 2 shows mean streamwise and cross-stream velocity pro-
files at various downstream locations. LES predictions follow
the experimental data quite well. Further results associated with
the model are shown in Figure 3. The upper left panel shows

that the dynamically computed coefficient is close to the stan-
dard valuec2

s ∼ 0.01− 0.02, except in the near-wake region
where the coefficient is larger. The time-scale (shown on the
top center panel) shows only small variations across the domain.
The average square error and square time-derivative all display
smooth distributions across the domain, as do the averages of
FLM andFMM .

Conclusions

A follow up study of a dynamic time-scale Lagrangian subgrid-
scale model for LES [8] has been undertaken. Connections
to the temporal Taylor-scale and mean zero-crossing scale of
the error signal generated by the Germano identity have been
pointed out. Simulations in (half)-channel high Reynolds num-
ber flow show very little differences between the mean veloc-
ity and Reynolds stress profiles when compared to the origi-
nal time-scale. However, the dynamically-computed time-scale
displays more uniform and reasonable scaling behavior as func-
tion of distance to the ground, in agreement with the findingsof
Refs. [8, 14]. In terms of added computational expense, com-
pared to accumulating the averages forFLM andFMM as in the
traditional approach, additionally for the present dynamic time-
scale the averages ofE2 and (dE/dt)2 must be accumulated.



Figure 3: Contours across the domain of (a) the dynamic coefficient, (b) the dynamic time-scale in units ofH/u∗ whereu∗ is the
friction velocity andH is the domain height, (c) mean square error in units of(u4

∗)
2, (d) the squared time derivative of the error in units

of (u5
∗/H)2, (e)FLM in units ofu4

∗, and (f)FMM in units ofu4
∗.

Each requires a trilinear interpolation at each point to advance
in time (and in addition such interpolation is required to eval-
uate the Lagrangian time derivative ofE). As with the other
subgrid values, this is only done every five time steps duringthe
simulation. On average, simulations using the dynamic time-
scale took about 13 % longer to run compared to the traditional
Lagrangian dynamic model.

Concluding, we remark that the interpretation of the averaging
time-scale based on the mean-crossing time for the error signal
is conceptually appealing and has the advantage found in Refs.
[8, 14] of leading to averaging time-scales that agree better with
expected physical eddy-turnover time-scales of the flow. How-
ever, the interpretation based on the mean-crossing time also
highlights the fact that recourse to a non-dynamic parameter
must still be made, both in the present approach (we use 4π τE ),
as well as in that of Refs. [8, 14] (who selected

√
2 τE ).

Acknowledgements

Supported by the US National Science Foundation (GRFP and
AGS-1045189). CM also acknowledges the Australian-US Ful-
bright Commission for support.

References

[1] Bou-Zeid, E., Meneveau, C. and Parlange, M., A scale-
dependent Lagrangian dynamic model for large eddy sim-
ulation of complex turbulent flows,Phys. Fluids, 17,
2005, 025105.

[2] Chester, S., Meneveau, C. and Parlange, M., Modeling
turbulent flow over fractal trees with renormalized numer-
ical simulation,J. Comp. Phys., 225, 2007, 427–448.

[3] Germano, M., Piomelli, U., Moin, P. and Cabot, W., A
dynamic subgrid-scale eddy viscosity model,Phys. Fluids
A, A 3, 1991, 1760.

[4] Lilly, D., A proposed modification of the Germano sub-
grid scale closure method,Phys. Fluids A, 4, 1992, 633.

[5] Meinders, E. R. and Hanjalić, K., Vortex structure and
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